Latent space data assimilation by using deep learning

نویسندگان

چکیده

Performing data assimilation (DA) at low cost is of prime concern in Earth system modeling, particularly the era Big Data, where huge quantities observations are available. Capitalizing on ability neural network techniques to approximate solution partial differential equations (PDEs), we incorporate deep learning (DL) methods into a DA framework. More precisely, exploit latent structure provided by autoencoders (AEs) design an ensemble transform Kalman filter with model error (ETKF-Q) space. Model dynamics also propagated within space via surrogate network. This novel ETKF-Q-Latent (ETKF-Q-L) algorithm tested tailored instructional version Lorenz 96 equations, named augmented system, which possesses that accurately represents observed dynamics. Numerical experiments based this particular evidence ETKF-Q-L approach both reduces computational and provides better accuracy than state-of-the-art algorithms such as ETKF-Q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Deep Latent Space for Multi-Label Classification

Multi-label classification is a practical yet challenging task in machine learning related fields, since it requires the prediction of more than one label category for each input instance. We propose a novel deep neural networks (DNN) based model, Canonical Correlated AutoEncoder (C2AE), for solving this task. Aiming at better relating feature and label domain data for improved classification, ...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Data-Driven Ghosting using Deep Imitation Learning

Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player...

متن کامل

Data-Driven Fuzzy Modeling Using Deep Learning

Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...

متن کامل

IoT Data Analytics Using Deep Learning

Xiaofeng Xie, Di Wu, Siping Liu, Renfa Li Abstract: Deep learning is a popular machine learning approach which has achieved a lot of progress in all traditional machine learning areas. Internet of thing (IoT) and Smart City deployments are generating large amounts of time-series sensor data in need of analysis. Applying deep learning to these domains has been an important topic of research. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly Journal of the Royal Meteorological Society

سال: 2021

ISSN: ['1477-870X', '0035-9009']

DOI: https://doi.org/10.1002/qj.4153